
Journal of Sound and Vibration (1997) 207(4), 453–464

PREDICTION OF ROTOR HIGH-SPEED
IMPULSIVE NOISE WITH A COMBINED

CFD–KIRCHHOFF METHOD

S. L  J. K

Department of Aerospace Engineering, Seoul National University, Seoul, Korea



Y. H. Y  M. P. I

NASA Ames Research Center, Moffett Field, Ca, U.S.A.

(Received 12 June 1996, and in final form 14 March 1997)

A combined Computational Fluid Dynamics(CFD)–Kirchhoff method is presented for
predicting high-speed impulsive noise generated by a rotor in hover. Two types of Kirchhoff
integral formulas are used: one of them is a classical linear Kirchhoff formulation and the
other a non-linear Kirchhoff formulation. An Euler finite-difference solver is executed first,
from which a flow field is obtained to be used as an input to the Kirchhoff formulation
to predict the acoustic far-field. The calculations are performed at Mach numbers of 0·90
and 0·95 to investigate the effectiveness of the linear and non-linear Kirchhoff formulas for
delocalized flow. During these calculations, the retarded time equation is also carefully
examined, in particular, for the cases where a control surface is located outside the sonic
cylinder, for which multiple roots are obtained. Predicted results of acoustic far-field with
the linear Kirchhoff formulation agree well with the experimental data when the control
surface is at a particular location (Rcs /R=1·46), but the correlation weakens as it moves
away from this specific location of the control surface due to the delocalized non-linear
aerodynamic flow field. Calculations based on the non-linear Kirchhoff equation using the
sonic cylinders as the control surfaces show reasonable agreements with the experimental
data in the negative amplitudes for both tip Mach numbers of 0·90 and 0·95, except for
some computational integration problems over a shock. It can be concluded that a
non-linear formulation is necessary if the control surface is close to the blade and the flow
is delocalized.
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1. INTRODUCTION

High-speed impulsive rotor noise has been identified as one of the major noise sources
generated by a rotor in high forward speed. The main mechanism has been attributed to
transonic flow field around a blade tip in the advancing side. The prediction capability for
this high-speed impulsive noise has been developed with varying degrees of success by
many researchers. These prediction analyses have been mostly based on the acoustic
analogy, called the Ffowcs Williams and Hawkings(FW–H) formulation [1], in which
monopoles and dipoles are used for various applications with different rotor systems and
speed ranges.

For a blade tip Mach number below the critical Mach number, the monopole and dipole
representation provides fairly good results compared with the experimental data. In the
high tip Mach number range, the monopole and dipole representation underpredicts the
measured acoustic amplitude and does not predict the proper acoustic waveforms,
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particularly when a strong shock wave is present. Past the delocalization Mach number,
the non-linear quadrupole term has been used to represent the non-linear flow field [2–5].
However, since this quadrupole term has a volume integral, the proper analytical
modelling for this term turns out to be extremely difficult. Even though currently available
acoustic representations of this quadrupole term may not be quite accurate physically and
mathematically, this quadrupole representation has substantially improved the acoustic
prediction capability in recent years. That is, the acoustic waveform and its amplitude seem
to be better predicted when the quadrupole term is included. However, this acoustic
quadrupole modelling is not quite mature for the high transonic speed range, and many
questions remain to be resolved such as non-linear acoustic wave propagation [6, 7].

Another way to predict the sound field is by using a CFD method. Without using the
acoustic analogy, a CFD solver has extended its computational domain to the acoustic
far-field, in addition to solving the aerodynamic near-field. An Euler solver has been used
to solve two dimensional blade-vortex interaction noise [8] and recently to predict the noise
field generated by a non-lifting rotor at high hover Mach numbers [9]. This CFD method
provides a rich numerical database, from which acoustic wave formation and propagation
through the non-linear flow field can be examined in detail. Even though CFD solvers have
been used extensively to predict the blade surface pressure distribution, these solvers are
not suitable for predicting the acoustic radiation over regions far from the blade tip. The
grid densities are insufficient to resolve the details of the acoustic far-field and numerical
viscosity will generate computational instability problems. However, a potential advantage
of CFD applications to helicopter acoustics is that acoustic pressure waves propagate to
the far field along characteristic lines, and grid densities can be massed accordingly [9, 10].

An alternative way to take advantage of the near field CFD capability and far field
acoustic analogy formulation is a combined CFD and Kirchhoff formulation [10, 11]. That
is, a CFD solver is used to calculate the flow field near the blade and then this flow field
information is used in a Kirchhoff formulation as an input. This combined CFD–Kirchhoff
method is the main theme of this investigation. In this paper, a three-dimensional unsteady
compressible Euler solver is used to calculate the flow field near the blade. Then, this flow
field is used first in the classical linear Kirchhoff formulation to predict the acoustic far
field. This linear formulation has two basic assumptions. First, the control surface should
be large enough to contain all the non-linear aerodynamic flow field, which may be
extended to the far field for delocalized flow. And secondly the sound propagation speed
is assumed constant, and so the effect of the non-linear flow field on sound propagation
is neglected.

In order to resolve these problems for the linear Kirchhoff formulation, a non-linear
Kirchhoff formulation has been developed by Isom [12]. This non-linear formulation is an
integral representation of the pressure and velocity on the control surface located at the
linear sonic cylinder and the representation contains all the non-linear effects inside the
control surface by converting the non-linear volume integral to the surface integral. One
of the big advantages of this nonlinear formulation is the close proximity of the sonic
surface to the rotor tip, so a CFD code is needed to resolve only the near-field region.

This paper compares the results of the linear formulation over several control surface
locations (inside and outside of the sonic cylinder) and non-linear Kirchhoff formulas. The
retarded time equation of these formulas is carefully examined due to the supersonic nature
of the problem for control surfaces located beyond the sonic cylinder. The predicted
acoustic results will be compared with available hover test data at Mach numbers of 0·90
and 0·95. The observer location is fixed with a distance of 3·09 times the rotor radius from
the hub and the azimuth angle on the stationary Kirchhoff surface is defined as shown
in Figure 1.
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Figure 1. Schema of high-speed impulsive noise measurement set-up.

2. LINEAR KIRCHHOFF FORMULATION

Kirchhoff integral formula for a stationary control surface is the analytical expression
of Huygens’ principle [13]. The Kirchhoff equation is

p(x� , t)=
1
4p ggS $cos u

r2 p−
1
r

1p
1n

+
cos u

aar
1p
1t% dS(y� , t), (1)

where p is the perturbed pressure; (x� , t) are the observer’s location and time: (y� , t) are the
source location and retarded time variables; u is the angle between the normal vector (n� )
on the surface and the radiation vector (r� ); r is the distance between a source at the retarded
time and an observer; aa is the speed of sound. Note that pressure and its derivatives are
evaluated at the retarded time. This formulation has been extended to moving surfaces [14]
and used for aeroacoustic calculations such as transonic blade-vortex interaction noise
[15–16]. A list of nomenclature is provided in the index.

The advantages of this formulation are; (1) it is expressed in terms of a surface integral,
(2) all terms are linear, and (3) sound propagation speed is constant. One disadvantage
is that the control surface should be large enough to contain the entire non-linear
aerodynamic flow field. This requirement may generate a problem for the cases where the
non-linear flow field is extended to the far field such as delocalized flow. Another
disadvantage is that the effect of the non-linear flow field beyond the control surface on
sound propagation is not included in this formulation.

3. RETARDED TIME SOLUTION FOR SUPERSONIC RANGE

The retarded time equation, even though it appears simple and benign, plays a very
important role in calculating equation (1) and extreme care should be taken in obtaining
its roots, particularly for the case of a control surface located outside of the sonic cylinder,
where multiple roots exist [17]. The multiple roots of the retarded time equation seem to
be an inevitable consequence of placing the control surface outside the sonic cylinder.

The multiple roots of the retarded time equation can be explained in the following
manner. The relationship of the retarded time with the observer time is as follows

t= t−R/aa, (2)
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Figure 2. Retarded time solutions of sources for subsonic and supersonic control surface locations at
Mtip =0·90 for Rcs /R ratios. (a) 1·05, (b) 2·41. Key for C1 values: ——, 240; · · · · , 300; –· –· –, 360.

where R is the distance between a source position at the sound generation time and an
observer at the sound receiving time. In order for sound waves generated from any two
separate sources on the control surface to reach the observer simultaneously, the following
equation should be satisfied.

R1(t1)/aa +C1(t1)/V=R2(t2)/aa +C2(t2)/V= t, (3)

where R1, R2 are distances from the sources to the observer, C1, C2 are the respective
azimuth angles of the source positions at the sound generation time, and V is an angular
speed of the blade. For a given angle C1, the position of the second source C2 can be found
by

F(C)=−(V/aa)(R1 −R2)+C2 −C1 =0. (4)

The behavior of the function F(C) of equation (4) is illustrated in Figure 2, where two
distinctive features of equation (4) in the subsonic and supersonic ranges are shown. That
is, the solution of equation (4) for a subsonic range has only one root all the time
(Figure 2(a)), while it has multiple roots for a supersonic range (Figure 2(b)).

4. NON-LINEAR KIRCHHOFF FORMULATION

The non-linear Kirchhoff formulation for acoustic pressure is given as [12],

p(b, t)=−
61/3r0a2

aM2
tipo

18pb ggS

Vr (T, Z0)−Vr (l, Z0)
T− l

dl dZ0

=T− l =2/3

+
62/3r0a2

aM2
tipo

36pb ggS

P(T, Z0)−P(l, Z0)
T− l

sgn (T− l)
=T− l =1/3 dl dZ0

−
61/3r0a2

a(g+1)Mtipo

36pbġ ggS

p2(T, Z0)−P2(l, Z0)
T− l

dl dZ0

=T− l =2/3, (5)

where pressure p(b, t) is non-dimensional and transonically scaled by r0a2
ao2/3; Vr is the

radial velocity scaled by VRo; r0 and aa are density and speed of sound in undisturbed
air; g is the ratio of specific heat; Mtip is blade tip Mach number; o is the inverse of the
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aspect ratio; b is the distance to an observer along a line tangent to the sonic cylinder and
is defined as b=[(VRob /a0)2 −1]1/2; V is the angular speed; Rob is the distance from the hub
to the observer; Z0 is the vertical distance scaled by o2/3aa/V; T is a phase variable defined
as T=(1/o)(u+ b−tan−1 b); u is the cylindrical polar angle in a blade-fixed co-ordinate
in radians; l is the integration variable defined as the negative of x/c, where x is the blade
co-ordinate; ġ=tan us /Mtip , where us is the angle between the vector normal to the sonic
circle and a shock.

The surface integrals in equation (5) are taken over the entire sonic plane, which is
normal to the blade span-axis and tangent to the linear sonic cylinder. Equation (5) is the
result of transforming the second order non-linear small disturbance potential equation
to an integral equation. The conversion is accomplished by an elementary use of
generalized functions and proceeds very much as in the derivation of the more general
FW–H equation. There are three surface integrals, denoted as the Vr , P, P2 terms. They
are analogues, respectively, of the monopole, dipole, and quadrupole integrals that appear
in various FW–H type equations. The novel feature of this equation is the appearance of
the quadrupole term, which is originally a volume integral, as a surface integral. The
reduction of volume integration to surface integration is based on several assumptions. The
first (and main) assumption is that the derivative of disturbance pressure normal to the
sonic plane is much smaller than its derivative tangent to the sonic plane. The tangential
derivative is essentially a time derivative through the rapidly varying pressure waveform.
The second assumption is that the curvature of the shock or characteristic surface in the
direction normal to the plane of rotation is small off the blade tip and near the sonic plane.
This assumption is based on the fact that a shock off the blade tip (in delocalized flow)
is transonic: the Mach number of the flow relative to the shock is only slightly greater than
one, and so the shock is nearly plane.

Equation (5) has several remarkable properties. In the case of delocalized flow, with a
shock extending from the blade tip into the far field, each of the three integrals is singular
as the phase variable T approaches the shock from either side. This means that when any
one of the surface integrals is numerically evaluated in isolation from the other two, it will
fail as T approaches the shock. The same singular behavior results when any two of the
integrals are evaluated together in isolation from the remaining third. When, however, all
three integrals are simultaneously evaluated (taken all together in one numerical bite) the
value of acoustic pressure p(b, t) on the left side of the equation is finite as the variable
T approaches the shock from either side. This finite collective behavior of the three
integrals is unexpected and noticed only after the rather tedious derivation of the complete
formula [12].

The explanation is simple. When the phase variable T is very close to either side of the
shock, all three integrands can be taken together under one double integral, and it can
be shown that the combined integrands, added together, are continuous across the shock
(whereas each integrand apart from the other two is discontinuous). This continuity
follows from the small disturbance shock relations (the demonstration of continuity is itself
a tedious algebraic affair). The physical significance of this collectively continuous behavior
is that the points on the shock surface are not sources of sound [7]. On the other hand,
if the formula were to be further simplified by dropping, for example the quadrupole term,
then the points on the shock surface would become acoustic sources—the shock would
radiate, but only because the simplification has violated a shock conservation law. It
follows that even though equation (5) is in several respects an approximation, any further
simplification would result in a loss of essential physics.

There is clearly a computational advantage in the elimination of a volume quadrupole
integral in favor of a surface integral. There is, however, a price to pay for this
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simplification. The factors =T− l =−1/3 and =T− l =−2/3 in the two surface integrals will
amplify any numerical inaccuracies when both T and l are near a shock. Also, it is
important that the continuity of the summed integrands across a shock is used when T
is near the shock and the integration variable l traverses the shock. But these problems
are far easier to handle than the problem of carrying out a full volume integration,
especially if the volume includes points off the blade tip. Indeed, if the volume includes
a shock, then the same kinds of numerical integration problems must occur when observer
and integration variables are near the shock and when they traverse it.

5. COMPARISON WITH THE EXPERIMENTAL DATA

An Euler finite difference solver is used to obtain the flow around a hovering rotor blade
[9], assuming that viscous effects are negligible for the high speed rotor impulsive noise.
The details of this code which include numerical algorithms and computational grid system
are given in the references [9] and [11]. The experimental data were taken with a UH1H
rotor blade which has a rectangular planform with the NACA0012 airfoil section [18, 19].
Figure 3 shows the pressure distributions at several positions for the blade tip Mach
number of 0·9. Since the blade rotates counterclockwise, the shock appears in the left side
of the waveform and bends over to the direction of the freestream with respect to a
blade-fixed co-ordinate system. Using this flow field information as an input, the linear
Kirchhoff formulation is used to predict the acoustic far-field using several control surface
locations. Figure 4 represents the variation of an acoustic planform for different control
surface locations. On the control surface located inside the sonic cylinder (RCS /R=1·05)

Figure 3. Pressure distributions at several radial positions on the rotor plane at Mtip =0·90 for Rcs /R ratios:
(a) 1·05; (b) 1·11; (c) 1·46; (d) 2·41; (e) 3·09.
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Figure 4. Acoustic planform variation on the control surface for Rcs /R ratios of (a) 1·05, inside the sonic
cylinder and (b) 1·46, outside the sonic cylinder in case of Mtip =0·90.

as shown in Figure 4(a), the retarded acoustic planform is enlarged or shrunk as the
subsonic radiation Mach number increases (azimuth angles from 0–180°) or decreases
(azimuth angles from 180–360°). On the other hand, for a control surface outside the sonic
cylinder (RCS /R=1·46) as shown in Figure 4(b), the acoustic planform is enlarged and
breaks into multiple regions as the Mach number increases and goes beyond unity (sonic
speed). Depending on the supersonic radiation Mach numbers at a given observer time,
there are several variations of the retarded acoustic planform shapes along the control
surface located in a supersonic range as shown at the non-dimensional time of 4·85, 5·42,
and 5·71 in Figure 4(b).
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Figures 5 and 6 display the pressure distribution and the acoustic signal distribution
on the retarded acoustic planform in a supersonic range (Figure 4(b)) at several
observer’s times. At t=4·85, Figure 5 shows a single shock wave around 20° and
an overlapping of the two pressure waves around 150°, which correspond to the
multiple roots of the retarded time as shown in Figure 4(b). At the same time, the
large contribution of the acoustic signal is produced around 150° as shown in Figure 6.
On the other hand, at t=5·42, the pressure distribution in Figure 5 shows three
distinctive peaks which correspond to three roots of the retarded time equation as
shown in Figure 4(b). However, the resultant acoustic signal distribution is almost
negligible as shown in Figure 6 due to the fact that dp/dn and dp/dt terms cancel each
other.

Figure 7 shows the acoustic pressure predictions using the linear Kirchhoff formula
with the selected control surfaces located inside or outside of the sonic circle for both
hover tip Mach numbers of 0·90 and 0·95. In the cases where the control surface is
inside the sonic surface (Rcs /R=1·05 for Mtip =0·90; Rcs /R=1·03 for Mtip =0·95),
the predicted results do not match well with the experimental data. Particularly
the predicted waveform shapes are quite symmetric and unlike the experimental data.
This discrepancy may be attributed to the fact that the flow field beyond the control
surface is still very non-linear and the shock is extended far beyond the control
surface.

Now the control surface is enlarged beyond the sonic circle into a supersonic region to
capture all the non-linear aerodynamic flow field. The expected results are improved
substantially in terms of amplitudes and waveform shapes as the control surface is enlarged
until a certain location. At RCS /R=1·46, the predicted results match very well with the

Figure 5. Pressure distributions on the control surface outside the sonic cylinder (RCS /R=1·46) at selected
observer times (t) in case of Mtip =0·90: (a) 4·23; (b) 4·85; (c) 4·97; (d) 5·42; (e) 5·71 and (f) 6·01.
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Figure 6. Acoustic signal (Q) distribution on the control circle (at y=0 only) outside the sonic cylinder
(RCS /R=1·46) at the same observer times as recorded in Figure 5 for Mtip =0·90. The acoustic signal is calculated
from [Q]= [(cos u/r2)p−(1/r) 1p/1n+(cos u/aar) 1p/1t].

experimental data in both the amplitude and the waveform as shown in Figure 7. At
this particular location, the previous work [10, 11] also showed good correlation with the
test data. Further expansion of the control surface beyond this particular location shows
the deterioration of the predicted results in waveforms and amplitudes. This may be
attributed to the fact that the CFD results may be contaminated by the numerical
dissipation.

Figure 7. Linear Kirchhoff acoustic pressure prediction at the observer point with respect to the position of
the control surface: Mtip values; (a) 0·90 and (b) 0·95. Key for Rcs /R ratios: ––––, 1·03; · · · · , 1·46; ——, 1·96;
WWW, experimental.
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Figure 8. Non-linear Kirchhoff acoustic pressure prediction at the observer point with respect to the position
of the control surface for (a) Rcs /R=1·11, Mtip =0·90; (b) Rcs /R=1·05, Mtip =0·95. Key: ——, Non-linear
Kirchhoff; ––––, linear Kirchhoff; WWW, experimental.

In the case of the hover tip Mach number of 0·95 where a strong shock is extended well
to the far field, the predicted results show the same trend as of the hover tip Mach number
of 0·90. There are still some unanswered questions in this linear Kirchhoff formulation
such as the applications of Huygens’ principle for supersonic region and the validity of
applications of Huygens’ principle in the near aerodynamic field.

Calculations based on the non-linear Kirchhoff formula (equation 5) for tip Mach
numbers of 0·90 and 0·95 are compared with the experimental data in Figure 8. An
extended trapezoidal method is used for the singular integration. Amplitudes and
waveforms are in reasonable agreement, even though a numerical singularity problem
appears across the shock as previously discussed. This problem can be resolved if a proper
analytical expression is used for all three integrands. Also the integration of the non-linear
term in equation (5) depends strongly on the shock angle (ġ), but there is a difficulty in
estimating the shock angle accurately in the numerical solution. The Mtip =0·95 case is
a severe test of the nonlinear formulation because the data surface is only about
seven-tenth of a shock from the blade tip. The linear calculation based on the control
surface on the sonic cylinder is rather poor. This results support a general conclusion: it
is essential to give good account of non-linearity when a Kirchhoff formulation uses a
control surface that is close to the blade tip.

6. CONCLUDING REMARKS

Rotor high speed impulsive noise is investigated with a combined CFD–Kirchhoff
method and its results are compared with the experimental data for a hovering rotor at
high hover Mach numbers. First, the classical linear Kirchhoff formulation is examined
in terms of location of control surfaces and the retarded time equation. The results that
emerge here are consistent with the basic physics of the flow. When the control surface
is well outside of the non-linear aerodynamic flow field, the linear Kirchhoff formulation
gives amplitudes and waveforms that agree well with the experimental data. On the other
hand, the non-linear Kirchhoff formulation is used for the best advantage when the control
surface is very near the blade tip. Then it is the only non-linear formulation that accurately
describes the acoustic field.
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APPENDIX: NOMENCLATURE

aa speed of sound in undisturbed air
Mtip blade tip Mach number
n� normal vector on the surface
p perturbed pressure
r� radiation vector
R distance between a source position at the

sound generation time and an observer at
the sound receiving time or length of blade

Rcs radius of control surface
Rob distance from the hub to the observer
t observer time
T phase variable
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x blade co-ordinate
x� , y� location vectors
Z0 scaled vertical distance
b distance to an observer along a line

tangent to the sonic cylinder
o inverse of the aspect ratio
g specific heat ratio
C respective azimuth angle of the source

positions at sound generation time
r0 density of undisturbed air

l integration variable
V angular speed of the blade
t retarded time
u angle between the normal vector on the

surface and the radiation vector or
cylindrical polar angle in a blade-fixed
co-ordinate in radians

us angle between the vector normal to the
sonic circle and a shock


